
Game Physics

Game and Media Technology

Master Program - Utrecht University

Dr. Nicolas Pronost

Physics engine

design and implementation

Game Physics

• The physics engine is a component of the game

engine

• The game engine separates reusable features and

specific game logic

– basically software components (physics, graphics, input,

network, etc.)

• The physics engine handles the simulation of the

world

– physical behavior, collisions, terrain changes, ragdoll

and active characters, explosions, object breaking and

destruction, liquids and soft bodies, ...

3

Physics engine

Game Physics

• Some SDKs

– Open Source

• Bullet, Open Dynamics Engine (ODE), Tokamak, Newton Game

Dynamics, PhysBam, Box2D

– Closed source

• Havok Physics

• Nvidia PhysX

4

Physics engine

Havok (Diablo 3) PhysX (Mafia II) ODE (Call of Juarez)

Game Physics

• Bullet Physics Library is an open source game

physics engine

– http://bulletphysics.org, open source under ZLib license

– It provides collision detection, soft body and rigid body

solvers

– It has been used by many movie and game companies

in AAA titles on PC, consoles and mobile devices

– It has a modular extendible C++ design

– This is the engine you will use for the practical

assignment

• have a good look at the user manual and the numerous demos

(e.g. CCD Physics, Collision and SoftBody Demo)

5

Case study: Bullet

http://bulletphysics.org/
http://bulletphysics.org/

Game Physics

• Bullet Collision Detection can be used on its own
as a separate SDK without Bullet Dynamics
– Discrete and continuous collision detection

– Swept collision queries

– Generic convex support (using GJK), capsule, cylinder,
cone, sphere, box and non-convex triangle meshes

– Support for dynamic deformation of non-convex triangle
meshes

• Multi-physics Library includes
– Rigid body dynamics including constraint solvers

– Support for constraint limits and motors

– Soft body support including cloth and rope

6

Features

Game Physics

• The main components are organized as follows

7

Design

Soft Body Dynamics Bullet Multi Threaded Extras:

Maya Plugin,

etc. Rigid Body Dynamics

Collision Detection

Linear Math, Memory, Containers

Game Physics

• First the high level simulation manager is defined

– btDiscreteDynamicsWorld or btSoftRigidDynamicsWorld

– manages the physics objects and constraints

– implements the update call to all objects at each frame

• Then the objects are created
– btRigidBody

– you will need

• the mass (>0 for dynamic objects, 0 for static)

• the collision shape (box, sphere, etc.)

• the material properties (friction, restitution, etc.)

• Finally the simulation is updated at each frame
– stepSimulation

8

Overview

Game Physics 9

Initialization

// Collision configuration contains default setup for memory, collision setup

btDefaultCollisionConfiguration * collisionConfiguration = new

btDefaultCollisionConfiguration();

// Set up the collision dispatcher

btCollisionDispatcher * dispatcher = new

btCollisionDispatcher(collisionConfiguration);

// Set up broad phase method

btBroadphaseInterface * overlappingPairCache = new btDbvtBroadphase();

// Set up the constraint solver

btSequentialImpulseConstraintSolver * solver = new

btSequentialImpulseConstraintSolver();

btDiscreteDynamicsWorld * dynamicsWorld = new btDiscreteDynamicsWorld(dispatcher

, overlappingPairCache, solver, collisionConfiguration);

dynamicsWorld->setGravity(btVector3(0,-9.81,0));

Game Physics 10

Simulation

for (int i=0; i<100; i++) {

 dynamicsWorld->stepSimulation(1.0f/60.f, 10);

 // print positions of all objects

 for (int j=dynamicsWorld->getNumCollisionObjects()-1; j>=0 ; j--) {

 btCollisionObject * obj = dynamicsWorld->getCollisionObjectArray()[j];

 btRigidBody * body = btRigidBody::upcast(obj);

 if (body && body->getMotionState()) {

 btTransform trans;

 body->getMotionState()->getWorldTransform(trans);

 printf("World pos = %f,%f,%f\n",

float(trans.getOrigin().getX()), float(trans.getOrigin().getY()),

float(trans.getOrigin().getZ()));

 }

 }

}

Game Physics 11

Termination

//remove the rigid bodies from the dynamics world and delete them

for (int i=dynamicsWorld->getNumCollisionObjects()-1; i>=0 ; i--) {

 btCollisionObject * obj = dynamicsWorld->getCollisionObjectArray()[i];

 btRigidBody * body = btRigidBody::upcast(obj);

 if (body && body->getMotionState()) delete body->getMotionState();

 dynamicsWorld->removeCollisionObject(obj);

 delete obj;

}

// delete collision shapes

for (int j=0; j<collisionShapes.size(); j++) {

 btCollisionShape * shape = collisionShapes[j];

 collisionShapes[j] = 0;

 delete shape ;

}

delete dynamicsWorld;

delete solver;

delete overlappingPairCache;

delete dispatcher;

delete collisionConfiguration;

Game Physics

Dynamics Data

Collision Data

• Data structures used and computation stages
performed by a call to stepSimulation

Collision
shapes

Object
AABBs

Overlapping
pairs

Contact
points

Transform
velocity

Mass and
inertia

Constraint
contacts

joints

12

Rigid Body Physics Pipeline

Forward Dynamics

Broadphase Collision

Detection

Narrowphase

Collision

Detection

Forward Dynamics

Apply forces
Predict

transforms
Compute
AABBs

Detect
pairs

Compute
contacts

Solve
constraints

Integrate
positions

Game Physics

• The simulation stepper updates the world

transformation for active objects by calling
btMotionState::setWorldTransform

• It uses an internal fixed time step of 60 Hertz

– when the game frame frequency is smaller (game

faster), it interpolates the world transformation of the

objects without performing simulation

– when the game frame frequency is larger (game

slower), it will perform multiple simulations

• the maximum number of iterations can be specified

13

Simulation step

Game Physics

• Bullet provides algorithms and structures for
collision detection
– Object with world transformation and collision shape

• btCollisionObject

– Collision shape (box, sphere etc.) usually centered
around the origin of their local coordinate frame
• btCollisionShape

– Interface for queries
• btCollisionWorld

• The broad phase quickly rejects pairs of objects
that do not collide using a dynamic bounding
volume tree based on the AABBs
– it can be changed to another algorithm

14

Collision detection

Game Physics

• A collision dispatcher iterates over each pair of

possibly colliding objects, and calls the collision

algorithm corresponding to each configuration

• These algorithms return the time of impact, the

closest points on each object and the penetration

depth / distance vector

15

Collision dispatcher

Game Physics 16

Collision dispatcher

BOX SPHERE

CONVEX,

CYLINDER,

CONE,

CAPSULE

COMPOUND
TRIANGLE

MESH

BOX boxbox spherebox gjk compound concaveconvex

SPHERE spherebox spheresphere gjk compound concaveconvex

CONVEX,

CYLINDER,

CONE,

CAPSULE

gjk gjk gjk compound concaveconvex

COMPOUND compound compound compound compound compound

TRIANGLE

MESH
concaveconvex concaveconvex concaveconvex compound gimpact

Game Physics

• Bullet uses a small collision margin for collision

shapes to improve performance and reliability

– set to a factor of 0.04 (i.e. expand the shape by 4 cm if

unit is meter)

– to still look correct, the margin is usually subtracted from

the original shape

• It is always highly recommended to use SI units

everywhere

17

Collision detection

Game Physics

• Bullet provides three ways to filter colliding objects

– Masks

• user defined IDs (could be seen as layers in 2D) grouping

possibly colliding objects together

– Broadphase filter callbacks

• user defined callbacks called at the early broad phase of the

collision detection pipeline

– Nearcallbacks

• user defined callbacks called at the late narrow phase of the

collision detection pipeline

18

User collision filtering

Game Physics

• The rigid body dynamics is implemented on top of

the collision detection

• It adds force, mass, inertia, velocity and constraint

• Main rigid body object is btRigidBody

– moving objects have non-zero mass and inertia

– inherits world transform, friction and restitution from
btCollisionObject

– adds linear and angular velocity

19

Rigid body dynamics

Game Physics

• Bullet has 3 types of rigid bodies

– Dynamic (moving) bodies

• have positive mass, position updated at each frame

– Static (non moving) bodies

• have zero mass, cannot move but can collide

– Kinematic bodies

• have zero mass, can be animated by the user (can push

dynamic bodies but cannot react to them)

20

Rigid body dynamics

Game Physics

• The world transform of a body is given for its

center of mass

– if the collision shape is not aligned with COM, it can be

shifted in a compound shape

• Its basis defines the local frame for inertia

• The btCollisionShape class provides a method to

automatically calculate the local inertia according

to the shape and the mass

– the inertia can be edited if the collision shape is different

from the inertia shape

21

Rigid body dynamics

Game Physics

• Rigid body constraints are defined as
btTypedConstraint

– Bullet includes different constraints such as hinge joint

(1 rot. DOF) and ball-and-socket joint (3 rot. DOF)

• Constraint limits are given for each DOF

– Lower limit and upper limit

– 3 configurations

• lower = upper means that the DOF is locked

• lower > upper means that the DOF is unlimited

• lower < upper means that the DOF is limited in that range

22

Rigid body dynamics

Game Physics

• Bullet provides dynamics for rope, cloth and soft

body

• The main soft body object is btSoftBody that also

inherits from btCollisionObject

– each node has a dedicated world transform

• The container for soft bodies, rigid bodies and
collision objects is btSoftRigidDynamicsWorld

23

Soft body dynamics

Game Physics

• Bullet offers the function btSoftBodyHelpers::

CreateFromTriMesh to automatically create a soft

body from a triangle mesh

• Bullet can use either direct nodes/triangles

collision detection or a more efficient

decomposition into convex deformable clusters

24

Soft body dynamics

Game Physics

• Forces can be applied either on every node of a

body or on an individual node

• It is possible to make nodes immovable

• Or attach nodes to a rigid body

• Or attach two soft bodies using constraints

25

Soft body dynamics

softBody->addForce(const btVector3& forceVector);

softBody->addForce(const btVector3& forceVector, int node);

softBody->setMass(int node,0.0f);

softBody->appendAnchor(int node, btRigidBody* rigidbody, bool

disableCollisionBetweenLinkedBodies=false);

Game Physics

• Convex

collision

26

Demos

• Concave

collision

• Joint

• Convex hull

distance

• Fracture • Soft

Game Physics

• You will use Bullet in your assignment to control the

motion of a creature

• The default configuration of the physics world uses

– A 3D axis sweep and prune broad phase

– A sequential impulse constraint solver

– A fixed collision object for the ground

• The Application creates and manages a Creature, a

Scene and the simulation time stepping

• The Application takes care of the simulation loop

(update and render) and manages the user inputs

• The Scene manages the rotation of the mobile platform

and the throwing of the balls

27

Assignment

Game Physics

• To control the motion of the creature you have to
use PD controllers at the joints
– Create a class PDController and add a container for

them in the Creature (1 per DOF)

– Angular motors have to be enabled for the joints you
want to control (Creature.cpp, line 69 and 82)

– PD controller gains have to be tuned to produce natural
behavior

– At each simulation step
• The balance corrections are fed to the PD controllers

• The PD controllers give back the torques to apply to correct the
pose according to the current pose, velocity and gains

• The torques are given to the joint motors (function
setMotorTarget)

28

Assignment

Game Physics

• The function btCollisionObject::getWorldTransform
returns a btTransform describing the 3D

transformation from the local reference frame of an

object to the global world reference frame

(common to every object)

• The function btTransform::inverse can be used

to get the inverse transformation

• The functions getCenterOfMassPosition and

getInvMass return respectively the COM and the

inverse of the mass of a btRigidBody

29

Assignment

Game Physics 30

Assignment

UPPER_LEG

𝑚𝑎𝑠𝑠 3 𝑘𝑔

LOWER_LEG

𝑚𝑎𝑠𝑠 3 𝑘𝑔

FOOT

𝑚𝑎𝑠𝑠 5 𝑘𝑔

0.1

0.4

0.5

0.05

0.2

0.24

𝑦

KNEE

ANKLE

𝑥

𝑧

Game Physics

• Do not waste time with more processing power

than needed to get a targeted effect

– Graphics, AI, and so on need it as well

• Simplify the equations depending on the number of

dimensions of the simulated world

• Use primitive shapes as much as possible for

collision detection

– use low number of vertices in convex hulls (performance

and stability)

31

Efficiency

Game Physics

• Be careful about the ratios

– sometimes difficult to manage both very small and very

big objects, need to reduce internal time step

– same for very different masses

• Combine multiple static triangle meshes into one

to reduce computations in broad phase

32

Efficiency

Game Physics

• Neglect unwanted or not important effects

– you can assume for example that the sum of the gravity,

the reaction force and the static friction is zero

– you can neglect or simulate air resistance by a drag

coefficient multiplied by the velocity

• Run full physics simulation only on relevant objects

– only visible or near player objects

– only currently active objects

– but be careful about the discontinuities when they are

simulated again

33

Efficiency

Game Physics

• To save up many useless calculations, we do not

want to simulate an object which does not move

– For example sitting on the ground or a spring at rest

– Because of drag and friction, only objects on which a

consistent net force is applied will not settle down

• We need to come up with two functionalities

– One for deactivating an object

– And one for activating an object back

34

Object (de)activation

Game Physics

• Collision detector still returns contacts with

deactivated objects but omitted in velocity

resolution algorithm

– Numerical integration is skipped for deactivated objects,

so it saves computation time

• The object is deactivated when both linear and

angular velocities are below a threshold (body

specific values)

– Deactivated objects are therefore more stable

35

Object (de)activation

Game Physics

• The object is activated

– when it collides with another active object

• another threshold can be used for the minimal severity of the

collision needed to activate again the object

– when non-constant external forces are applied to the

object

• In a game, every object is initialized in its rest

configuration and deactivated

– At start up, it is then very fast, even with many objects

– It is only when interactions occur with the object that it

will be simulated until it settles down again

36

Object (de)activation

Game Physics

• Precompute as much as possible

– Try to tabulate mathematical functions, random

numbering etc.

– To perform only array access in the physics update

– Example

• sine call takes 5 times longer to be evaluated than to access an

array

37

Optimization techniques

float acc = 0;

for (int i = 0; i < 1000; i++)

 acc = acc + i * sin(x * i); // instead use: sinTable[x*i]

Game Physics

• Simplify your math

– Mathematical operators are not equally fast

– Complex function >> divide >> multiply >>

addition/subtraction

– Try to simplify equations (and/or tabulate them)

– Try to reduce type conversion

– Examples

38

Optimization techniques

double acc = 1000000;

for (int i = 0; i < 10000; i++) acc = acc / 2.0;

acc = 1000000;

for (int i = 0; i < 10000; i++) acc = acc * 0.5; // takes 60% of

the execution time of the previous version

a*b + a*c = a*(b+c); // gets rid of one multiply

b/a + c/a = (1/a)*(b+c); // changes one divide for one multiply

 = (b+c)/a; // gets rid of one divide

Game Physics

• Store data efficiently

– chose the right data type with the right precision

– both code execution and memory footprint are

proportional to the number of bytes used

39

Optimization techniques

Type Size (B) Range

char 1 [-128 , 127]

unsigned char 1 [0 , 255]

int 4 [-2 147 483 648 , 2 147 483 647]

unsigned int 4 [0 , 4 294 967 295]

float 4 [-3.4*1038 , 3.4*1038] (7 decimal)

double 8 [-1.7*10308 , 1.7*10308] (15 decimal)

bool 1 true / false

Game Physics

• Be linear

– CPUs come with memory caches loaded when

accessing data

– Access continuous data in memory (e.g. traversing an

array from begin to end) produces less cache misses

• so less loading time

• vectors are faster to traverse than lists

40

Optimization techniques

Game Physics

• Size does matter

– To compile arrays of structures, the compiler performs a

multiplication by the size to create the array indexing

• if the structure size is a power of 2, the multiplication is replaced

by a shift operation (much faster)

• you can round array sizes aligned to a power of 2 even if you do

not use all of it

– Example

41

Optimization techniques

int softBodyNodes [38];

int softBodyNodes [64]; // faster allocation

End of

Physics engine

design and implementation

 Next

Written exam

